Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
PLoS One ; 19(4): e0300878, 2024.
Article in English | MEDLINE | ID: mdl-38635835

ABSTRACT

Saltwater intrusion in the coastal areas of Bangladesh is a prevalent phenomenon. However, it is not conducive to activities such as irrigation, navigation, fish spawning and shelter, and industrial usage. The present study analyzed 45 water samples collected from 15 locations in coastal areas during three seasons: monsoon, pre-monsoon, and post-monsoon. The aim was to comprehend the seasonal variation in physicochemical parameters, including water temperature, pH, electrical conductivity (EC), salinity, total dissolved solids (TDS), hardness, and concentrations of Na+, K+, Mg2+, Ca2+, Fe2+, HCO3-, PO43-, SO42-, and Cl-. Additionally, parameters essential for agriculture, such as soluble sodium percentage (SSP), sodium absorption ratio (SAR), magnesium absorption ratio (MAR), residual sodium carbonate (RSC), Kelly's ratio (KR), and permeability index (PI), were examined. Their respective values were found to be 63%, 16.83 mg/L, 34.92 mg/L, 145.44 mg/L, 1.28 mg/L, and 89.29%. The integrated water quality index was determined using entropy theory and principal component analysis (PCA). The resulting entropy water quality index (EWQI) and SAR of 49.56% and 63%, respectively, indicated that the samples are suitable for drinking but unsuitable for irrigation. These findings can assist policymakers in implementing the Bangladesh Deltaplan-2100, focusing on sustainable land management, fish cultivation, agricultural production, environmental preservation, water resource management, and environmental protection in the deltaic areas of Bangladesh. This research contributes to a deeper understanding of seasonal variations in the hydrochemistry and water quality of coastal rivers, aiding in the comprehension of salinity intrusion origins, mechanisms, and causes.


Subject(s)
Drinking Water , Groundwater , Water Pollutants, Chemical , Water Quality , Environmental Monitoring/methods , Rivers , Bangladesh , Sodium/analysis , Water Pollutants, Chemical/analysis , Groundwater/analysis , Drinking Water/analysis , India
2.
Heliyon ; 10(7): e27857, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38560260

ABSTRACT

Groundwater is a significant water resource for drinking and irrigation in Satkhira district, Bangladesh. The depletion of groundwater resources and deterioration in its quality are the results of the confluence of factors such as industrialization, intensive irrigation, and rapid population growth. For this reason, this study focused on the evaluation of tubewell water of six unions of Kaligonj upazila in Satkhira district, which is situated in the coastal southwest part of Bangladesh. Major and trace elemental concentrations were assimilated into positive matrix factorization (PMF) to identify potential sources and their respective contributions. Principal component analysis (PCA) revealed that groundwater salinization and manmade activities were the primary causes of heavy metals in the coastal groundwater. Its average pH value was found to be 7.5, while Dissolved oxygen, Total dissolved solids, salinity, and conductivity, with values ranging from 1.18 to 7.38 mg/L, 0.5-4.88 g/L, 0.4-5%, and 0.95 to 8.56 mS/cm, respectively. The total hardness average value was 561.7 mg/L, classified into the very hard water categories, which is why 90% of the tubewell water samples were unfit for household purposes. All samples had an excessive level of arsenic present. The iron concentration of fifteen (15) samples crossed the standard limit according to WHO 2011 value. Around 63% of the samples were of the Na+-K+-Cl--SO42- type, and about 72% were sodium-potassium and alkali types. 98% of samples were covered in chloride and bicarbonate. The findings showed that 45.83% of the groundwater samples had negative Chloroalkaline index (CAIs), while 54.16% had positive. The permeability index (PI) was an average of 73%, and residual sodium carbonate (RSC) averaged 260.2 mg/L, and the findings clearly showed that 80% of the samples weren't appropriate for irrigation. According to the sodium adsorption ratio (SAR) value, 65% of the samples fell into the unsuitable category. These calculations indicated a high overall salinity hazard in the study area, which may be caused by the intrusion of sea water given that the study area is close to the coastal region. Findings compared to standards revealed that the majority of the samples were deemed unfit for drinking and irrigation purposes. Hence, additional attention must be paid to this area to ensure the availability of drinkable water and to preserve sustainable farming practices.

3.
J Hazard Mater ; 465: 133214, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38101007

ABSTRACT

Eleven trace metals (Cd, Cr, Fe, Mn, Cu, Ni, Co, Zn, As, Pb, and Ag) in sediments of Bangladesh's ship breaking area were measured by an atomic absorption spectrometer to determine origin, contamination extent, spatial distributions, and associated ecological and human health hazards. This study found considerable quantities of Pb, Cd, Mn, Zn, and Cu when compared with standards and high levels of Pb, Cd, Zn, Cu, As, and Ag contamination according to pollution evaluation indices. Different indices indicate most of the sampling sites were highly polluted. However, spatial distribution maps indicate that trace metals were predominantly deposited in the northern and southern region. The ecological risk index revealed that Cd has the highest while Pb and As had moderate risk. Based on the health index values, Zn for both adults and children were higher than the safe limit while Mn, Pb, Cr, As, Fe, Cu, Ni, and Co for children were close to the threshold. The mean total carcinogenic risk values of Cr, As, and Ni for children and Ni for adults exceeded the permissible threshold. The cancer risk possibilities were further assessed using Monte Carlo simulation. Most trace metals have anthropogenic origins, which were attributed to ship breaking activities.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Adult , Child , Humans , Metals, Heavy/analysis , Environmental Monitoring , Bangladesh , Ships , Cadmium , Lead , Geologic Sediments , Risk Assessment , Water Pollutants, Chemical/analysis , China
5.
Heliyon ; 9(1): e13027, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36711290

ABSTRACT

The scarcity of freshwater in most of the megacities in the world is an important concern. In this regard, scientifically harvested rainwater could provide an effective measure to this crisis. In this attempt, we developed a cost-effective sensor-based automated first-flush rainwater harvesting system (RHS) to improve the freshwater scarcity and economic development of megacities like Dhaka, Bangladesh. To investigate the performance of the developed system, a suit of representative rainwater samples was systematically collected, preserved, and assessed between the months of July-December 2021 for water quality parameters such as physicochemical (pH, EC, TDS, DO, hardness, and alkalinity), anions (F-, Cl-, NO2 -, NO3 -, Br-, and SO4 2-), elemental (Ca, Mg, Cr, As, Cd, Hg, Pb, Be, Ni, Se, and Fe), and microbial contamination analysis. A Multiparameter digital meter and a titrimetric method were employed for measuring the physicochemical properties whereas elemental concentration was detected using an inductively coupled plasma-mass spectrometer and atomic absorption spectrometer. The changes in microbial contamination in the preserved rainwater were investigated from time to time during the whole experimental period. The findings showed that the mean pH (6.90) and concentrations (mg/L) of other concerning parameters such as TDS (15.5), DO (7.26), hardness (14.9), Cl- (3.59), NO3 - (4.84), SO4 2- (4.62), Fe (<0.2), Cr (0.086 µg/L), As (0.224 µg/L), Cd (0.260 µg/L), Hg (0.270 µg/L), and Pb (5.530 µg/L) in the harvested rainwater samples were below the WHO drinking water guidelines and literature data implying that the harvested rainwater derived from the developed RHS is completely safe for drinking and other uses even in respect to the microbial contamination (total bacterial counts: 0-15 CFU/mL, and total and fecal coliform less than 1.8 MPN/100 mL) for long storage. Hence, this technology has a huge opportunity to mitigate safe freshwater scarcity and groundwater depletion issues, especially in megacities such as Dhaka, Bangladesh.

6.
Chemosphere ; 297: 134022, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35202672

ABSTRACT

This study investigates the Covid-19 driven indiscriminate disposal of PPE wastes (mostly face mask and medical wastes) in Chittagong metropolitan area (CMA), Bangladesh. Based on the field monitoring, the mean PPE density (PPE/m2± SD) was calculated to be 0.0226 ± 0.0145, 0.0164 ± 0.0122, and 0.0110 ± 0.00863 for July, August, and September 2021, respectively (during the peak time of Covid-19 in Bangladesh). Moreover, gross information on PPE waste generation in the city was calculated using several parameters such as population density, face mask acceptance rate by urban population, total Covid-19 confirmed cases, quarantined and isolated patients, corresponding medical waste generation rate (kg/bed/day), etc. Moreover, the waste generated due to face mask and other PPEs in the CMA during the whole Covid-19 period (April 4, 2020 to September 5, 2021) were calculated to be 64183.03 and 128695.75 tons, respectively. It has been observed that the negligence of general people, lack of awareness about environmental pollution, and poor municipal waste management practices are the root causes for the contamination of the dwelling environment by PPE wastes. As a result, new challenges have emerged in solid waste management, which necessitates the development of an appropriate waste management strategy. The ultimate policies and strategies may help to achieve the SDG goals 3, 6, 11, 12, 13, and 15, and increase public perception on the use and subsequent disposal of PPEs, especially face masks.


Subject(s)
COVID-19 , Medical Waste , Bangladesh/epidemiology , COVID-19/epidemiology , Humans , Personal Protective Equipment , Plastics , SARS-CoV-2
7.
Environ Sci Pollut Res Int ; 29(18): 27521-27533, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34981371

ABSTRACT

The present study focuses on the indiscriminate disposal of personal protective equipment (PPEs) and resulting environmental contamination during the 3rd wave of COVID-19-driven global pandemic in the Chittagong metropolitan area, Bangladesh. Because of the very high rate of infection by the delta variant of this virus, the use of PPEs by the public is increased significantly to protect the ingestion/inhalation of respiratory droplets in the air. However, it is a matter of solicitude that general people throw away the PPEs to the dwelling environment unconsciously. With the increase of inappropriate disposal of PPEs (i.e., mostly the disposable face masks made from plastic microfibers), the possibility of transmission of the virus to the general public cannot be neglected completely. This is because this virus can survive for several days on the inanimate matter like plastics and fibers. At the same time, the result of environmental contamination by microplastic/microfiber has been widespread which eventually creates the worst impact on ecosystems and organisms. The present results may help to increase public perception of the use and subsequent disposal of PPEs, especially the face masks.


Subject(s)
COVID-19 , Personal Protective Equipment , Bangladesh/epidemiology , Ecosystem , Humans , Pandemics , Plastics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL
...